The Mass-critical Nonlinear Schrödinger Equation with Radial Data in Dimensions Three and Higher
نویسندگان
چکیده
We establish global well-posedness and scattering for solutions to the mass-critical nonlinear Schrödinger equation iut+∆u = ±|u|4/du for large spherically symmetric Lx(R d) initial data in dimensions d ≥ 3. In the focusing case we require that the mass is strictly less than that of the ground state. As a consequence, we obtain that in the focusing case, any spherically symmetric blowup solution must concentrate at least the mass of the ground state at the blowup time.
منابع مشابه
Global Well-posedness and Scattering for the Mass-critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions
We establish global well-posedness and scattering for solutions to the defocusing mass-critical (pseudoconformal) nonlinear Schrödinger equation iut + ∆u = |u|4/nu for large spherically symmetric Lx(R n) initial data in dimensions n ≥ 3. After using the reductions in [32] to reduce to eliminating blowup solutions which are almost periodic modulo scaling, we obtain a frequency-localized Morawetz...
متن کاملThe Cubic Nonlinear Schrödinger Equation in Two Dimensions with Radial Data
We establish global well-posedness and scattering for solutions to the mass-critical nonlinear Schrödinger equation iut +∆u = ±|u|u for large spherically symmetric Lx(R ) initial data; in the focusing case we require, of course, that the mass is strictly less than that of the ground state. As a consequence, we deduce that in the focusing case, any spherically symmetric blowup solution must conc...
متن کاملOn the Blowup for the L-critical Focusing Nonlinear Schrödinger Equation in Higher Dimensions below the Energy Class
We consider the focusing mass-critical nonlinear Schrödinger equation and prove that blowup solutions to this equation with initial data in H(R), s > s0(d) and d ≥ 3, concentrate at least the mass of the ground state at the blowup time. This extends recent work by J. Colliander, S. Raynor, C. Sulem, and J. D. Wright, [13], T. Hmidi and S. Keraani, [21], and N. Tzirakis, [36], on the blowup of t...
متن کاملMass Concentration Phenomenon for the Quintic Nonlinear Schrödinger Equation in 1d
We consider the L-critical quintic focusing nonlinear Schrödinger equation (NLS) on R. It is well known that H solutions of the aforementioned equation blow-up in finite time. In higher dimensions, for H spherically symmetric blow-up solutions of the L-critical focusing NLS, there is a minimal amount of concentration of the L-norm (the mass of the ground state) at the origin. In this paper we p...
متن کاملThe Mass-critical Fourth-order Schrödinger Equation in High Dimensions
We prove global wellposedness and scattering for the Mass-critical homogeneous fourth-order Schrödinger equation in high dimensions n ≥ 5, for general L initial data in the defocusing case, and for general initial data with Mass less than certain fraction of the Mass of the Ground State in the focusing case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008