The Mass-critical Nonlinear Schrödinger Equation with Radial Data in Dimensions Three and Higher

نویسندگان

  • ROWAN KILLIP
  • XIAOYI ZHANG
چکیده

We establish global well-posedness and scattering for solutions to the mass-critical nonlinear Schrödinger equation iut+∆u = ±|u|4/du for large spherically symmetric Lx(R d) initial data in dimensions d ≥ 3. In the focusing case we require that the mass is strictly less than that of the ground state. As a consequence, we obtain that in the focusing case, any spherically symmetric blowup solution must concentrate at least the mass of the ground state at the blowup time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Well-posedness and Scattering for the Mass-critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions

We establish global well-posedness and scattering for solutions to the defocusing mass-critical (pseudoconformal) nonlinear Schrödinger equation iut + ∆u = |u|4/nu for large spherically symmetric Lx(R n) initial data in dimensions n ≥ 3. After using the reductions in [32] to reduce to eliminating blowup solutions which are almost periodic modulo scaling, we obtain a frequency-localized Morawetz...

متن کامل

The Cubic Nonlinear Schrödinger Equation in Two Dimensions with Radial Data

We establish global well-posedness and scattering for solutions to the mass-critical nonlinear Schrödinger equation iut +∆u = ±|u|u for large spherically symmetric Lx(R ) initial data; in the focusing case we require, of course, that the mass is strictly less than that of the ground state. As a consequence, we deduce that in the focusing case, any spherically symmetric blowup solution must conc...

متن کامل

On the Blowup for the L-critical Focusing Nonlinear Schrödinger Equation in Higher Dimensions below the Energy Class

We consider the focusing mass-critical nonlinear Schrödinger equation and prove that blowup solutions to this equation with initial data in H(R), s > s0(d) and d ≥ 3, concentrate at least the mass of the ground state at the blowup time. This extends recent work by J. Colliander, S. Raynor, C. Sulem, and J. D. Wright, [13], T. Hmidi and S. Keraani, [21], and N. Tzirakis, [36], on the blowup of t...

متن کامل

Mass Concentration Phenomenon for the Quintic Nonlinear Schrödinger Equation in 1d

We consider the L-critical quintic focusing nonlinear Schrödinger equation (NLS) on R. It is well known that H solutions of the aforementioned equation blow-up in finite time. In higher dimensions, for H spherically symmetric blow-up solutions of the L-critical focusing NLS, there is a minimal amount of concentration of the L-norm (the mass of the ground state) at the origin. In this paper we p...

متن کامل

The Mass-critical Fourth-order Schrödinger Equation in High Dimensions

We prove global wellposedness and scattering for the Mass-critical homogeneous fourth-order Schrödinger equation in high dimensions n ≥ 5, for general L initial data in the defocusing case, and for general initial data with Mass less than certain fraction of the Mass of the Ground State in the focusing case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008